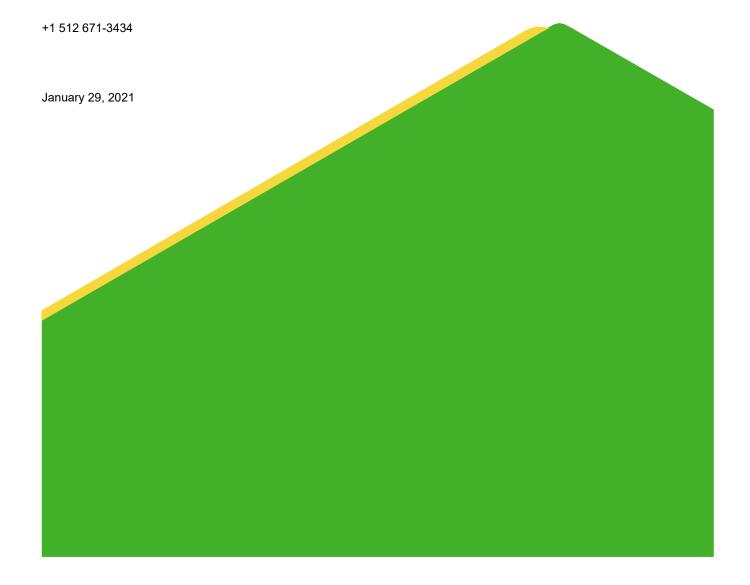


2020 Annual Groundwater Monitoring and Corrective Action Report

Martin Lake Steam Electric Station PDP 5 - Rusk County, Texas


Prepared for:

Luminant Generation Company LLC

Prepared by:

Golder Associates Inc.

2201 Double Creek Dr, Suite 4004, Round Rock, Texas, USA 78664

TABLE OF CONTENTS

LIST	OF FIGURES	ii
LIST	OF TABLES	ii
LIST	OF ATTACHMENTS	ii
ACR	ONYMS AND ABBREVIATIONS	. iii
EXE	CUTIVE SUMMARY	.iv
1.0	INTRODUCTION	1
2.0	MONITORING AND CORRECTIVE ACTION PROGRAM STATUS	3
3.0	KEY ACTIONS COMPLETED IN 2020	5
4.0	PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS	6
5.0	KEY ACTIVITIES PLANNED FOR 2021	7
6.0	REFERENCES	8

LIST OF FIGURES

Figure 1 PDP 5 Detailed Site Plan

LIST OF TABLES

Table 1 Statistical Background Values

Table 2 Appendix III Analytical Results

LIST OF ATTACHMENTS

Attachment 1 Alternate Source Demonstration Report

ii

ACRONYMS AND ABBREVIATIONS

CCR Coal Combustion Residuals

CFR Code of Federal Regulations

GWPS Groundwater Protection Standard

MCL Maximum Concentration Level

mg/L Milligrams per Liter

MLSES Martin Lake Steam Electric Station

NA Not Applicable

PDP Permanent Disposal Pond

SSI Statistically Significant Increase

SSL Statistically Significant Level

USEPA United States Environmental Protection Agency

EXECUTIVE SUMMARY

Golder Associates, Inc. (Golder) has prepared this report on behalf of Luminant Generation Company LLC (Luminant) to satisfy the 2020 annual groundwater monitoring and corrective action reporting requirements of the Coal Combustion Residuals (CCR) Rule (40 CFR 257, Subpart D) for the Permanent Disposal Pond 5 (PDP 5) (the "CCR unit") at the Martin Lake Steam Electric Station (MLSES) in Rusk County, Texas. The CCR unit and CCR monitoring well network are shown on Figure 1.

At the beginning and end of the 2020 reporting period, the CCR unit was operating under a Detection Monitoring Program as described in 40 CFR § 257.94. The Detection Monitoring Program for PDP 5 was established in September 2017. Statistically significant increases (SSIs) above background prediction limits were identified for several Appendix III parameters as part of the 2017 through 2019 Detection Monitoring events; however, Alternate Source Demonstrations were completed in 2018, 2019, and 2020 which indicated that a source other than the CCR unit caused the SSIs observed in 2017, 2018, and 2019. During 2020, SSIs were also identified for Appendix III constituents that included boron in well PDP-25, calcium in well PDP-23 and PDP-25, and chloride in well MW-20A. Alternate sources for the SSIs identified in the 2020 sample data are being evaluated in accordance with 40 CFR § 257.94. If an alternate source is not identified to be the cause of the 2020 SSIs, an Assessment Monitoring Program will be established in accordance with 40 CFR § 257.94(e)(2).

1.0 INTRODUCTION

The CCR Rule (40 CFR 257 Subpart D - Standards for the Receipt of Coal Combustion Residuals in Landfills and Surface Impoundments) has been promulgated by the United States Environmental Protection Agency (USEPA) to regulate the management and disposal of CCRs as solid waste under Resource Conservation and Recovery Act (RCRA) Subtitle D. For existing CCR landfills and surface impoundments, the CCR Rule requires that the owner or operator prepare an annual groundwater monitoring and corrective action report to document the status of the groundwater monitoring and corrective action program for the CCR unit for the previous calendar year. Per 40 CFR 257.90(e) of the CCR Rule, the report should contain the following information, to the extent available:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- (4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
 - (i) At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
 - (ii) At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in § 257.94 or the assessment monitoring program in § 257.95;
 - (iii) If it was determined that there was a statistically significant increase over background for one or more constituents listed in Appendix III to this part pursuant to § 257.94(e):
 - (A) Identify those constituents listed in Appendix III to this part and the names of the monitoring wells associated with such an increase; and
 - (B) Provide the date when the assessment monitoring program was initiated for the CCR unit.

- (iv) If it was determined that there was a SSL above the groundwater protection standard for one or more constituents listed in Appendix IV to this part pursuant to § 257.95(g) include all of the following:
 - (A) Identify those constituents listed in Appendix IV to this part and the names of the monitoring wells associated with such an increase;
 - (B) Provide the date when the assessment of corrective measures was initiated for the CCR unit;
 - (C) Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit; and
 - (D) Provide the date when the assessment of corrective measures was completed for the CCR unit.
- (v) Whether a remedy was selected pursuant to § 257.97 during the current annual reporting period, and if so, the date of remedy selection; and
- (vi) Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

2.0 MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

The PDP 5 CCR Unit is currently in a Detection Monitoring Program. Golder collected the initial Detection Monitoring Program groundwater samples from the PDP 5 CCR monitoring well network in September 2017. Subsequent Detection Monitoring Program groundwater samples have been collected on a semi-annual basis since that time. Data evaluation is completed using procedures described in the Statistical Analysis Plan (PBW, 2017) to identify statistically significant increases (SSIs) of Appendix III parameters over background concentrations. The Detection Monitoring Program sampling dates and parameters are summarized in the following table:

Detection Monitoring Program Summary

Sampling Dates	Parameters	SSIs	Assessment Monitoring Program Established
September 2017 February 2018 (re-samples)	Appendix III	Yes	No (Alternate Source Demonstration Completed)
June 2018 September 2018 November 2018 (re-samples)	Appendix III	Yes	No (Alternate Source Demonstration Completed)
May 2019 November 2019	Appendix III	Yes	No (Alternate Source Demonstration Completed)
May 2020 September 2020	Appendix III	Yes	No (Alternate Source Is Being Assessed)

The statistical background values and Appendix III analytical data are presented in Tables 1 and 2, respectively. SSIs of Appendix III parameters were identified for the 2017 through 2019 sampling events. An initial Alternate Source Demonstration was completed in 2018, which indicated that a source other than the CCR unit caused the SSIs observed in the 2017 sample data and 2018 re-sample data. Similarly, Alternate Source Demonstrations were completed in 2019 and 2020 based on the 2018 and 2019 sample data. As such, PDP 5 has remained in the Detection Monitoring Program. A summary of the Alternate Source Demonstration based on the 2019 sample data is presented in Attachment 1 as required by 40 CFR 257.94(e)(2).

Detection Monitoring Program groundwater samples were collected from the CCR groundwater monitoring network on a semi-annual basis in 2020, as required by the CCR Rule. The first 2020 semi-annual Detection

Monitoring Program sampling event was conducted in May 2020. The second 2020 semi-annual Detection Monitoring Program sampling event was conducted in September 2020. The analytical data from the 2020 semi-annual Detection Monitoring Program sampling events were evaluated using procedures described in the Statistical Analysis Plan to identify SSIs of Appendix III parameters over background concentrations. SSIs of Appendix III parameters over background concentrations were identified for several constituents for which SSIs had previously been attributed to alternate sources. Alternate sources for the SSIs identified in the 2020 sample data are being evaluated in accordance with 40 CFR § 257.94. If an alternate source is not identified to be the cause of the SSI, an Assessment Monitoring Program will be established in accordance with 40 CFR § 257.94(e)(2).

3.0 KEY ACTIONS COMPLETED IN 2020

Semi-annual Detection Monitoring Program groundwater monitoring events were completed in May and September 2020. The number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and the analytical results for the groundwater samples are summarized in Table 2. A map showing the CCR units and monitoring wells is provided as Figure 1. No CCR wells were installed or decommissioned in 2020.

An Alternate Source Demonstration was completed in April 2020 which documented that a source other than PDP 5 caused the SSIs detected over background levels during the 2019 Detection Monitoring Program sampling events, as required by 40 CFR 257.94(e)(2). A copy of the 2020 Alternate Source Demonstration is provided in Attachment 1.

4.0 PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the CCR groundwater monitoring program in 2020.

5.0 KEY ACTIVITIES PLANNED FOR 2021

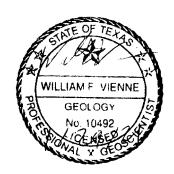
The following key activities are planned for 2021:

- Continue the Detection Monitoring Program in accordance with 40 CFR § 257.94.
- Complete evaluation of Appendix III analytical data and compare results to statistical background values to determine whether an SSI has occurred.
- If an SSI is identified, potential alternate sources (i.e., a source other than the CCR unit caused the SSI or
 that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in
 groundwater quality) will be evaluated. If an alternate source is identified to be the cause of the SSI, a
 written demonstration will be completed within 90 days of SSI determination and included in the Annual
 Groundwater Monitoring and Corrective Action Report.
- If an alternate source is not identified to be the cause of the SSI, an Assessment Monitoring Program will be established in accordance with 40 CFR § 257.94(e)(2).

6.0 REFERENCES

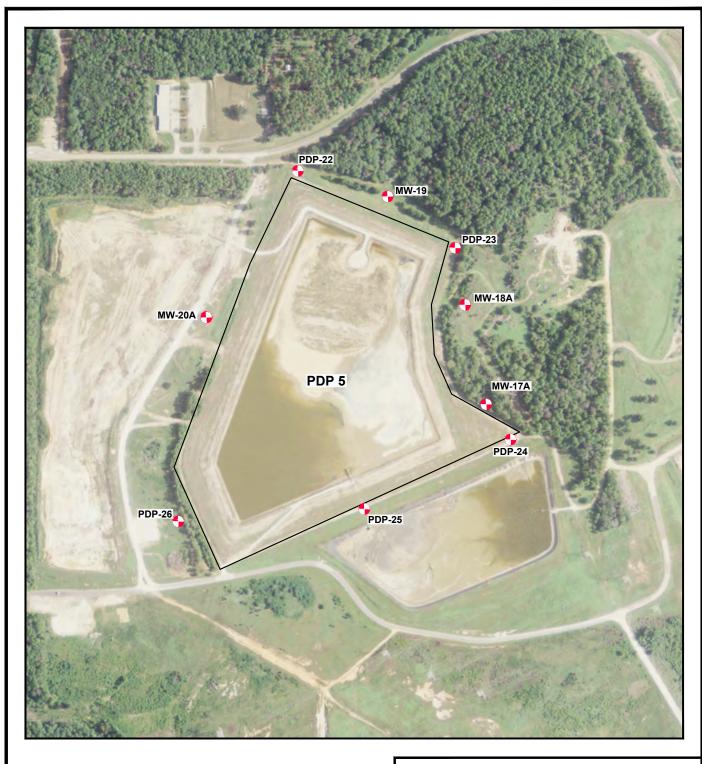
Pastor, Behling & Wheeler, LLC, 2017. Coal Combustion Residual Rule Statistical Analysis Plan, Martin Lake Steam Electric Station, PDP 5, Rusk County, Texas.

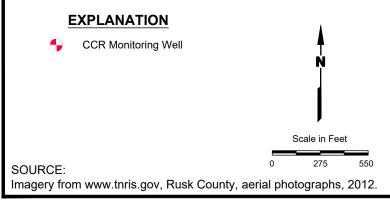
Signature Page


Golder Associates Inc.

Patrick J. Behling

Principal Engineer




William F. Vienne Senior Hydrogeologist

Golder and the G logo are trademarks of Golder Associates Corporation.

FIGURES

TABLES

Table 1 Statistical Background Values MLSES - PDP 5

Sample Location	Boron (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Flouride (mg/L)	field pH (s.u.)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
MW-17A	0.538	6.73	10.4	0.4	2.5 9.19	51.9	170
MW-18A	0.20	3.1	10.4	0.4	4.88 7.92	9.1	157
MW-19	0.782	237	57.7	0.512	12 4.6 8.08 672		1,380
MW-20A	0.213	25.7	12.3	0.954	3.06 8.76	148	381
PDP-22	0.411	306	32.7	1.07	4.08 8.63	216	1,780
PDP-23	0.0678	2	7.52	0.4	3.38 8.45	3.27	143
PDP-24	4.92	.92 45.9 22.6 1.03 1.33 9.97 533		533	894		
PDP-25	.25 0.136 41.3 197 0.		0.4	4.65 7.93	118	705	
PDP-26	0.111	4.74	14.6	0.577	5.35 7.57	64.6	438

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP 5

Sample	Date	Boran	Calcium	Chloride	Flouride	field pH	SO ₄	TDS
Location	Sampled	(mg/L)	(mg/L)	(mg/L)	(mg/L)	standard	(mg/L)	(mg/L)
	09/22/17	0.402	3.1	8.3	<0.1	units 6.78	31.2	111
	06/14/18	0.485	6.48	9.16	<0.1	6.87	45.9	129
	09/11/18	0.523	5.06	8.82	0.179 J	5.03	43.1	137
MW-17A	05/13/19	0.497	4.88	9.18	<0.1	6.79	44.7	145
IVIVV-177	11/07/19	0.52	5.05	8.81	<0.100	6.44	43.9	127
	05/19/20	0.521	5.09	8.74	<0.100	6.57	46.8	140
	09/25/20	0.321	5.76	10.1	<0.100	6.57	47.7	133
	09/21/17	0.0654	1.04	5.27	<0.1	6.94	3.23	45
	06/14/18	0.102	2	6.56	<0.1	6.92	3.48	71
	09/12/18	0.102	3.23	9.06	<0.1	5.69	4.82	150
	11/7/2018 re-							130
MW-18A	sample	0.128						
	05/13/19	0.117	1.01	6.17	0.138 J	6.64	3.23	73
	11/07/19	0.127	11.5	6.34	<0.100	6.23	3.67	68
	05/19/20	0.225	1.54	7.09	<0.100	6.89	5.97	86
	09/25/20	0.188	1.66	8.13	<0.100	6.78	6.03	77
	09/22/17	0.0677	2.74	5.36	<0.1	6.94	1.46 J	98
	06/14/18	0.577	133	24.4	0.216 J	6.78	328	758
	09/11/18	0.243	38	65.1	0.228 J	6.04	166	597
MW-19	11/07/18	-		5.22				
10100-13	05/13/19	0.429	122	26.8	0.229 J	6.72	349	813
	11/08/19	0.529	77.8	49.3	0.189 J	6.87	310	844
	05/19/20	0.0724	1.49	5.84	<0.100	6.91	1.02 J	85
	09/25/20	0.412	94.6	14.3	0.111 J	6.92	160	462
	09/22/17	0.0807	17.4	12.6	0.175 J	6.71	74.2	237
	02/21/18 re-			10.7				
	sample 06/13/18	0.171	24	10.9	0.672	6.72	132	250
	09/11/18	0.141	7.16	11	0.235 J	4.70	39.1	154
MW-20A	05/13/19	0.239	37.4	10.2	0.731	6.81	178	328
	11/08/19	0.132	9.9	10.2	0.465	6.51	88	205
	05/19/20	0.22	24	10.4	0.413	6.83	133	270
	09/25/20	0.107	8.94	12.6	0.132 J	6.68	54.3	162
	09/22/17	0.221	92.5	12.3	0.321 J	6.98	178	558
	06/14/18	0.115	7.78	11.8	0.239	6.63	186	491
	09/12/18	0.164	61.1	10.9	0.216 J	5.88	143	476
PDP-22	05/12/10	0.158	98.2	10.1	0.303 J	6.86	184	615
	11/12/19	0.226	34.3	12.6	0.218 J	6.93	215	482
	05/19/20	0.0646	54.9	1.06	<0.100	6.55	5.21	205
	09/25/20	0.206	25.1	12.7	0.128 J	6.73	186	398
	03123120	0.200	20.1	14.1	U. 120 J	0.73	100	390

TABLE 2 APPENDIX III ANALYTICAL RESULTS MLSES PDP 5

	09/22/17	0.0463	2.34	4.48	0.147 J	6.77	1.47 J	111
	09/22/17 02/21/18 re-	0.0403						
	sample		2.37					
	06/13/18	0.0357	2.29	6.21	<0.1	6.82	1.26 J	98
	09/11/18	0.0760	1.96	6.38	<0.1	5.32	1.52 J	98
PDP-23	11/7/2018 re- sample	0.0683						
	05/13/19	0.0628	1.89	6.98	<0.1	6.68	1.28 J	103
	11/12/19	0.0675	2.14	4.98	<0.100	6.72	1.41 J	93
	05/19/20	0.0709	2.03	6.86	<0.100	6.83	1.19 J	104
	09/25/20	0.0617	2.31	7.29	<0.100	6.74	<1.00	94
	09/22/17	3.01	25.8	17.5	0.898	6.95	231	440
	06/14/18	2.71	23.9	21.1	0.629	6.82	284	481
	09/11/18	4.08	41.6	19.4	0.832	4.20	460	760
PDP-24	05/13/19	3.23	23	21	0.871	6.95	300	537
FDF-24	11/12/19	3	21.9	20.6	0.751	6.87	295	520
	11/12/19	2.97	22.2	20.5	0.744	6.87	300	504
	05/19/20	3.17	21.4	21	0.61	6.79	286	512
	09/25/20	4.04	40.7	19.6	0.776	6.83	445	699
	09/22/17	0.133	36.8	130	0.157 J	6.81	89.1	481
	06/14/18	0.119	40.4	111	<0.1	6.78	73.4	439
	09/11/18	0.167	36.2	135	0.115 J	5.87	90.3	469
PDP-25	11/7/2018 re- sample	0.142						
	05/13/19	0.144	44.4	108	0.121 J	6.84	69	469
	11/12/19	0.184	38.6	117	<0.100	6.82	71.4	454
	05/19/20	0.202	53.7	105	<0.100	6.61	62.2	442
	09/25/20	0.174	46.3	123	<0.100	6.77	67.5	445
	09/22/17	0.0343	2.32	5.24	0.157 J	6.84	5.88	107
	06/14/18	0.0225 J	2.93	4.8	<0.1	6.89	4.27	100
	09/12/18	0.0371	2.37	4.88	<0.1	6.07	2.66 J	107
PDP-26	05/13/19	0.0528	1.9	4.59	0.217 J	6.86	2.7 J	106
	11/12/19	0.0622	2.25	4.64	0.122 J	6.77	2.1 J	102
	05/19/20	0.0538	2.09	4.52	<0.100	6.64	2.1 J	108
	09/25/20	0.0549	2.71	5.07	<0.100	6.83	1.91	92

Notes:

1. J - concentration is below sample quantitation limit; result is an estimate.

ATTACHMENT 1 ALTERNATE SOURCE DEMONSTRATION

Alternate Source Demonstration April 7, 2020

ALTERNATE SOURCE DEMONSTRATION SUMMARY MARTIN LAKE STEAM ELECTRIC STATION – PDP 5

Introduction

This Alternative Source Demonstration Summary was prepared to document that a source other than the Permanent Disposal Pond 5 (PDP 5) (the Site) caused the statistically significant increases (SSIs) over background levels observed during the 2019 Detection Monitoring Program sampling events as required by 40 CFR 257.94(e)(2). A detailed Site plan of the Coal Combustion Residual (CCR) groundwater monitoring network is shown on Figure 1. The Detection Monitoring Program groundwater data are summarized in Table 1.

2019 Semi-Annual Detection Monitoring Results and Discussion

Detection Monitoring Program groundwater samples were collected on a semi-annual basis from the Site CCR monitoring well network in 2019 in accordance with 40 CFR 257.94. Golder collected the initial 2019 Detection Monitoring Program groundwater samples in May 2019 and the second semi-annual Detection Monitoring Program groundwater samples in November 2019. Based on the semi-annual analytical results, SSIs were identified for boron in well PDP-25 and calcium in well PDP-23. Prediction limits for boron, calcium, and sulfate in well MW-20A and calcium in well PDP-25 were exceeded during the first semi-annual 2019 sampling event; however, since the prediction limits were not exceeded during the second semi-annual 2019 event, SSIs were not indicated for these constituents/wells in accordance with the procedures outlined in the Statistical Analysis Plan (PBW, 2017).

The boron concentrations in the 2019 groundwater samples from well PDP-25 (maximum sample concentration of 0.184 mg/L) exceeded the boron prediction limit of 0.136 mg/L for that well; however, the PDP-25 boron results are significantly lower than the boron concentrations observed at other Site wells where SSIs were not indicated. For example, five of the eight other CCR monitoring wells (MW-17A, MW-19, MW-20A, PDP-22, and PDP-24) had boron sample concentrations in 2019 that were higher than those observed in the PDP-25 samples, but SSIs were not indicated in these other wells. As such, the boron sample concentrations observed at PDP-25 are similar or less than those observed in other Site wells and are attributed to variability caused by the heterogeneity of the uppermost aquifer at the Site.

The calcium concentrations in the November 2019 groundwater sample from well PDP-23 (maximum sample concentration of 2.14 mg/L) exceeded the calcium prediction limit of 2.0 mg/L for that well; however, based on the extremely low concentrations of calcium in PDP-23, and the high variability in calcium concentrations observed in the site-wide PDP 5 detection monitoring samples (average calcium concentration for all wells in November 2019 was 22.6 mg/L), the prediction limit exceedance observed in PDP-23 is attributed to variability caused by the heterogeneity of the uppermost aquifer at the Site.

PDP 5 is built on top of three closed and capped landfills (PDP 1, PDP 2, and PDP 3). PDP 4, which is located adjacent to PDP 5 to the south, is also a closed and capped landfill. PDP 1 through PDP 4 are not considered regulated units under the CCR Rule. In addition to the natural variability caused by the heterogeneity of the groundwater system at the Site, sample concentrations identified as SSIs may also be influenced by potential historical effects caused by the closed landfills in the vicinity of PDP 5.

Conclusion

SSIs were identified for boron and calcium during the 2019 Detection Monitoring Program sampling events at PDP 5. All observed SSIs are attributed to natural variation in groundwater quality due to the heterogeneity of the

groundwater system and to potential effects from the closed landfills in the vicinity of PDP 5 (PDP 1 through PDP 4), and are not considered evidence of a release from the CCR unit. In accordance with Section 257.94(e)(2), Luminant should continue the Detection Monitoring Program. Initiation of an Assessment Monitoring Program is not required at this time.

References

Pastor, Behling & Wheeler, LLC (PBW), 2017. Coal Combustion Residual Rule, Statistical Analysis Plan, PDP 5, Rusk County, Texas. October 11, 2017.

PROFESSIONAL CERTIFICATION

This document and all attachments were prepared by Golder Associates Inc. under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I hereby certify that the alternative source demonstration at the referenced facility meets the requirements of Section 257.94(e)(2) of the CCR Rule.

Patrick J. Behling, P.E.

Principal Engineer

GOLDER ASSOCIATES INC.

Table 1
CCR Groundwater Detection Monitoring Data Summary
Martin Lake Steam Electric Station - PDP 5

Sample	Date	В		Ca	1	CI		FI		field	pН	so	94	TD	S
Location	Sampled	Prediction			•	Prediction				Predictio		Prediction		Predictio	
	-	Limit	Data	n Limit	Data	Limit	Data	Limit	Data	n Limit	Data	Limit	Data	n Limit	Data
	09/22/17		0.402		3.1		8.3		<0.1	2.5	6.78		31.2		111
	06/14/18		0.485		6.48		9.16		<0.1		6.87		45.9		129
MW-17A	09/11/18	0.538	0.523	6.73	5.06	10.4	8.82	0.4	0.179 J	9.19	5.03	51.9	43.1	170	137
	05/13/19	∤	0.497		4.88		9.18		<0.1		6.79		44.7		145
	11/07/19		0.52		5.05		8.81		<0.100		6.44		43.9		127
	09/21/17		0.0654		1.04		5.27		<0.1		6.94		3.23		45
	06/14/18	0.20	0.102	•	2	10.4	6.56	0.4	<0.1		6.92		3.48		71
MW-18A	09/12/18		0.211	3.1	3.23		9.06		<0.1	4.88	5.69	9.1	4.82	157	150
	11/07/18		0.128		1					7.92					
	05/13/19		0.117		1.01		6.17		0.138 J		6.64		3.23		73
	11/07/19		0.127		11.5		6.34		<0.100		6.23		3.67		68
	09/22/17		0.0677		2.74	ı	5.36	0.512	<0.1		6.94		1.46 J	1,380	98
	06/14/18	1	0.577		133		24.4		0.216 J	├	6.78	672	328		758
MW-19	09/11/18	0.782	0.243	237	38	38 57.7 122	65.1		0.228 J		6.04		166		597
	11/07/18	002			1		5.22								
	05/13/19		0.429		122		26.8		0.229 J		6.72		349		813
	11/08/19		0.529		77.8		49.3		0.189 J		6.87		310		844
	09/22/17		0.0807		17.4		12.6		0.175 J		6.71		74.2		237
	02/21/18 re-sample				-		10.7								
NAVA / OO A	06/13/18	0.040	0.171	05.7	24	40.0	10.9	0.054	0.672	3.06	6.72	440	132	004	250
MW-20A	09/11/18	0.213	0.141	25.7	7.16	12.3	11	0.954	0.235 J	8.76	4.70	148	39.1	- 381 -	154
	05/13/19		0.239		37.4		10.2		0.731		6.81		178		328
	11/08/19		0.132		9.9		10.2		0.465		6.51		88		205

Table 1
CCR Groundwater Detection Monitoring Data Summary
Martin Lake Steam Electric Station - PDP 5

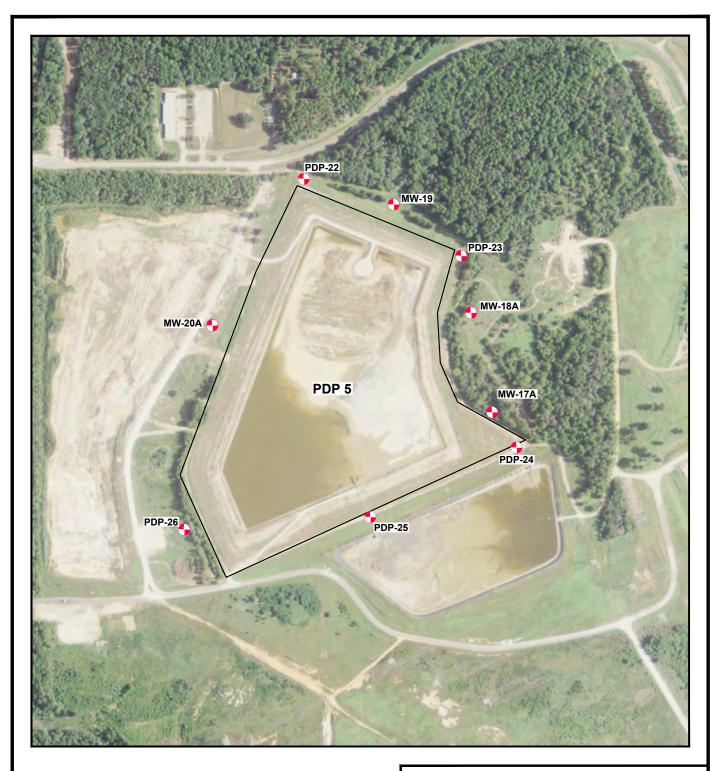
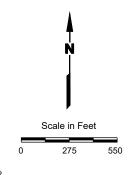

Sample	Date	Date B		Ca		CI		FI		field	рН	SO ₄		TDS	
Location	Sampled	Prediction	Sample					Prediction		Predictio	•	Prediction	•	Predictio	
	-	Limit	Data	n Limit	Data	Limit	Data	Limit	Data	n Limit	Data	Limit	Data	n Limit	Data
	09/22/17		0.221		92.5		12.3		0.321 J		6.98		178	_	558
	06/14/18		0.115		7.78		11.8		0.239	4.08 8.63	6.63		186		491
PDP-22	09/12/18	0.411	0.164	306	61.1	32.7	10.9	1.07	0.216 J		5.88	216	143	1,780	476
	05/13/19		0.158		98.2		10.1		0.303 J		6.86		184		615
	11/12/19		0.226		34.3		12.6		0.218 J		6.93		215		482
	09/22/17		0.0463		2.34		4.48		0.147 J		6.77		1.47 J		111
	02/21/18 re-sample				2.37					•					
	06/13/18		0.0357	•	2.29		6.21		<0.1	3.38	6.82		1.26 J		98
PDP-23	09/11/18	0.0678	0.0760	2	1.96	7.52	6.38	0.4	<0.1	8.45	5.32	3.27	1.52 J	143	98
	11/07/18		0.0683							•					
	05/13/19		0.0628		1.89		6.98		<0.1	•	6.68		1.28 J		103
	11/12/19		0.0675		2.14		4.98		<0.100		6.72		1.41 J		93
	09/22/17		3.01		25.8		17.5		0.898		6.95		231	-	440
	06/14/18		2.71	•	23.9		21.1		0.629		6.82		284		481
PDP-24	09/11/18	4.92	4.08	45.9	41.6	22.6	19.4	1.03	0.832	1.33	4.20	533	460	894	760
1 01 -24	05/13/19	4.52	3.23	40.0	23	22.0	21	1.03	0.871	9.97	6.95	000	300	004	537
	11/12/19		3		21.9		20.6		0.751	•	6.87		295	-	520
	11/12/19		2.97		22.2		20.5		0.744		6.87		300		504
	09/22/17		0.133		36.8		130		0.157 J		6.81		89.1		481
	06/14/18		0.119	•	40.4		111		<0.1		6.78		73.4	705	439
PDP-25	09/11/18	0.136	0.167	41.3	36.2	197	135	0.4	0.115 J	4.65	5.87	118	90.3		469
. 5. 20	11/07/18	0.136	0.142					0.1		7.93					
	05/13/19		0.144		44.4		108		0.121 J		6.84		69		469
	11/12/19		0.184		38.6		117		<0.100		6.82		71.4		454

Table 1 **CCR Groundwater Detection Monitoring Data Summary** Martin Lake Steam Electric Station - PDP 5


Sample	Date	Date B		Ca		CI		FI		field pH		SO ₄		TDS	
Location	Sampled	Prediction Limit	Sample Data	Predictio n Limit	Sample Data	Prediction Limit	Sample Data	Prediction Limit	Sample Data	Predictio n Limit	Sample Data	Prediction Limit	Sample Data	Predictio n Limit	Sample Data
	09/22/17		0.0343		2.32	93	5.24		0.157 J		6.84	64.6	5.88	-	107
	06/14/18	0.111 0.037	0.0225 J		2.93		4.8		<0.1	5.35 7.57 6.0	6.89		4.27		100
PDP-26	09/12/18		0.0371	4.74	2.37		4.88	0.577	<0.1		6.07		2.66 J	438	107
	05/13/19		0.0528		1.9		4.59		0.217 J		6.86		2.7 J		106
	11/12/19		0.0622		2.25		4.64		0.122 J		6.77		2.1 J		102

Notes:

- All concentrations in mg/L. pH in standard units.
 J concentration is below sample quantitation limit; result is an estimate.

EXPLANATION CCR Monitoring Well

MARTIN LAKE STEAM ELECTRIC STATION

TATUM, TEXAS

Figure 1

PDP 5 AREA DETAILED SITE PLAN

PROJECT: 5164B	BY: AJD	REVISIONS
DATE: SEPT., 2017	CHECKED: PJB	
·		

SOURCE: Imagery from www.tnris.gov, Rusk County, aerial photographs, 2012.

golder.com